

www.radonanalytik.de Radon-Check Bodenluft Stand 03/2021

Radon-Check Bodenluft

Radonmessungen in der Bodenluft sind geeignete Möglichkeiten, das geogene Radonpotential für ein abgegrenztes Gebiet (Verwaltungseinheit oder geologische Einheit) abzuschätzen oder an einem konkreten Standort (Baufeld) zu bestimmen. Die Ergebnisse dienen dazu, ein erhöhtes Risiko für eine Radon-Aktivitätskonzentration in der Raumluft und das damit verbundene gesundheitliche Risiko erkennen zu können und ggf. geeignete Maßnahmen zum Radonschutz in Betracht zu ziehen. Nach dem neuen Strahlenschutzgesetz (2017) bzw. der Strahlenschutzverordnung (2018) besteht in den ab 1.1.2021 von den Ländern auszuweisenden "Radonvorsorgegebieten" sogar eine Pflicht, zusätzliche Maßnahmen zum Radonschutz bei Neubauvorhaben einzubeziehen. Weiterhin besteht in diesen Gebieten auch eine Messpflicht zur Messung der Radon-Aktivitätskonzentration in der Raumluft an Arbeitsplätzen im Erd- und Untergeschoss eines Gebäudes, unabhängig von der Branche.

Im Mittelpunkt der Radon-Bodengasmessung steht ein geeignetes und bewährtes Verfahren, um die Radon-Aktivitätskonzentration (Rn-222) in der Bodenluft zu messen. Zusätzlich wird die Gaspermeabilität messtechnisch bestimmt. Beide Messgrößen werden zu einem geogenen Radonpotential verrechnet und sind ein Maß für die statistische Wahrscheinlichkeit des Radoneintritts in ein Gebäude. Entsprechende rechnerische Vorgaben sind in dem Forschungsvorhaben des Bundesamtes für Strahlenschutz (BfS-SW-24/18, 2018) beschrieben.

Die Radon-Aktivitätskonzentration (Rn-222) in der Bodenluft wird in der Regel über aktive Probenahmen mit Sonden in bis zu 1 Meter Tiefe und anschließender Auswertung mit Radonmessverfahren. Entsprechende technische Vorgaben sind in der DIN EN ISO 11665-11 beschrieben.

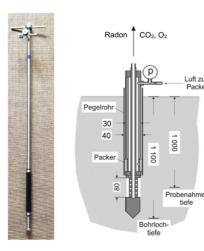
Die Gaspermeabilität in der Bodenluft wird in der Regel über die Messung des Volumenstroms und des korrelierenden Differenzdrucks bestimmt und beschreibt die Beweglichkeit und Verfügbarkeit der radonhaltigen Bodenluft für ein ankoppelndes Gebäude. Entsprechende technische Vorgaben sind in dem Forschungsvorhaben des BfS (FV 3609S10003, Abschlussbericht vom 22.9.2011) beschrieben.

Die Radonmessung in der Bodenluft stellt somit ein wichtiges diagnostisches Werkzeug dar, um Wahrscheinlichkeiten für erhöhte und auffällige Radon-Aktivitätskonzentration in der Raumluft und damit auch gesundheitliche Risiken abbilden zu können. Ein in einem individuellen Gebäude langfristig zu erwartenden Jahresmittelwert kann jedoch nicht direkt abgeleitet werden, da hier nicht wichtige weitere Parameter (z.B. kleinräume geologische Variationen, Gasdichtheit der Gebäudehülle, langfristiger wirksamer Differenzdruck gegenüber dem Erdreich und der Luftwechsel, das Nutzerverhalten bzw. die lüftungstechnische Ausstattung des Gebäudes ...) oder andere Quellen (Baustoffe) eine Rolle spielen können.

Die bisher verfügbare Radonkarte in Deutschland (BfS) basiert auf Daten von einigen tausend Messpunkten der Radon-Aktivitätskonzentration (Rn-222) in der Bodenluft (siehe Radon-Handbuch Deutschland). Es zeichnen sich jedoch Korrelationen mit den Innenraummessungen der Radonkonzentration ab. Während in 1 Meter Tiefe im Erdreich entsprechend hohe Konzentrationen von ca. 5 bis 1000 kBq/m³ vorherrschen, liegen die Innenraum-Konzentrationen im Bestand häufig um den Faktor 1000 niedriger. So liegt der derzeit aus den vorliegenden Messdaten abgeleitete Mittelwert im Erdreich bei 36 kBq/m³ und in der Raumluft bei ca. 50 Bq/m³.

Das Bundesumweltministerium bereitete schon im Jahr 2004 ein Radonschutzgesetz vor, das für den Zielwert 100 Bq/m³ Maßnahmen für Neu- und Altbauten unter dem Aspekt der Vorsorge regeln sollte. Dieser Wert gilt derzeit als Empfehlung des Bundesamtes für Strahlenschutz, des Umweltbundesamtes (Ausschuss für Innenraumrichtwerte AIR), der Weltgesundheitsorganisation WHO und des BVS auf Basis der jüngeren wissenschaftlichen Erkenntnisse. Ab einer langfristigen Aktivitätskonzentration von 100 Bq/m³ in der Innenraumluft sollen Sanierungsmaßnahmen bei bereits bestehenden Gebäuden durchgeführt werden. Neu zu errichtende Gebäude sollen so geplant und gebaut werden, dass Radonkonzentrationen von mehr als 100 Bq/m³ im Jahresmittel vermieden werden. (Hinweis: Derzeit liegen in etwa 10% der deutschen Wohnungen Radonkonzentrationen über 100 Bq/m³ vor)

Hierfür wurden Radonverdachtsgebiete definiert, in denen aufgrund einer erhöhten Radonkonzentration im Untergrund mit erhöhten Radonkonzentrationen in Gebäuden zu rechnen ist. Bei Neubauten (Planung) sind dabei entsprechend den Verdachtsgebieten I, II, III bauliche Schutzmaßnahmen der Klasse I, II, III zu berücksichtigen. Die Planung hat so zu erfolgen, dass möglichst 100 Bq/m³ nicht überschritten werden. Dies gilt für alle Neubauten. In bestehenden Gebäuden in Radon-Verdachtsgebieten der Klasse III ist grundsätzlich mit Radonkonzentrationen von mehr als 100 Bq/m³ zu rechnen.



www.radonanalytik.de Radon-Check Bodenluft Stand 03/2021

Vorgehensweise Radon-Bodengasmessung

Bei der Messung der Radon-Aktivitätskonzentration im Erdreich werden mit einem Erdbohrer Löcher gebohrt und eine Packersonde (Abb. 1) bis in eine Messtiefe von 1 m eingeführt (Abb. 2). Alternativ kann bei sehr steinigen Böden eine Einschlagsonde verwendet werden (Tschechische Sonde). Anschließend wird die Dichtheit des Messaufbaus überprüft und die Bodenluft aus der Messtiefe über eine aktive Luftprobenahme (integrierte oder manuelle Pumpe) in die Messkammer überführt. Die Kammer wird mehrmals (ca. 10 mal) mit Bodenluft gespült und anschließend die Radon-Aktivitäts-konzentration (über Po-218) sowie die CO₂- und O₂-Konzentrationen bestimmt (Abb. 3). In kurzer Zeit wird die Gleichgewichtskonzentration erreicht (ca. 15 Min.) und der Messwert notiert bzw. abgespeichert (Abb. 4). Für einen Messpunkt werden 3 Messpositionen im Abstand von 3 bis 5 Metern in Dreiecksanordnung benötigt. Der höchste Messwert wird zur Bewertung herangezogen.

Die Messung der Gaspermeabilität im Erdreich wird unmittelbar nach der Radonmessung durchgeführt. Hierzu wird an die Sonde eine elektronische Laborpumpe mit integriertem Volumenstromsensor und einem externen digitalen Differenzdrucksensor angeschlossen. Der hierbei im Überdruck ins Erdreich wirksame Volumenstrom wird stufenweise erhöht und der zugehörige Differenzdruck gemessen. Aus den Messdaten Volumenstrom und Differenzdruck wird die Gaspermeabilität je Messposition berechnet [7].

Luft zum

Abb. 1: Packer-Bodengassonde

Abb. 2: Frdbohrer im Finsatz

Abb. 3: Packersonde mit Radonmonitor

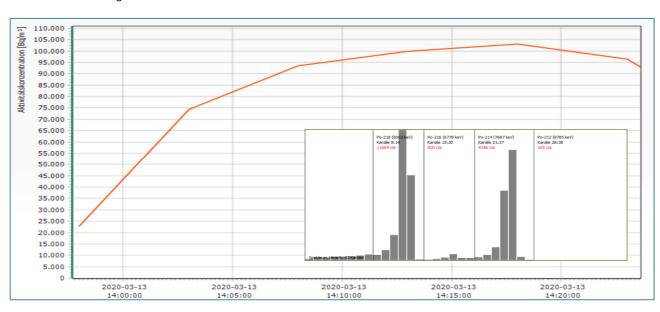


Abb. 4: Messung der Radon-Aktivitätskonzentration im Erdreich in 1 m Tiefe inkl. Alphaspektrum

Stand 03/2021

Einteilung der Radonverdachtsgebiete (Entwurf Radonschutzgesetz 2004)

20.000 Bq/m3 bis 40.000 Bq/m3 Klasse I: Klasse II: 40.000 Bg/m³ bis 100.000 Bg/m³

über 100.000 Bq/m3 Radon in der Bodenluft Klasse III:

Hinweis: Auch unter 20.000 Bq/m³ Bodenkonzentration kann können schon bei ungünstiger Bauweise (insbesondere in Bestandgebäuden) Radonauffälligkeiten in Häusern auftreten.

Unter Einbezug der Gaspermeabilität in der Bodenluft wurde mit der Bestimmung des geogenen Radonpotentials nun ein neues Verfahren eingeführt, welches derzeit auch für die Ausweisung der Radonvorsorgegebiete verwendet wird. Das Radonpotential (RP) ist eine dimensionslose, empirische und einfach zu berechnende, handhabbare Größe, die sich üblicherweise im Bereich von 1 bis 200 bewegt. Das geogene Radonpotential wurde als Variable im Gegensatz zu früheren Ansätzen, in denen nur die Bodenluftkonzentration verwendet wurde, gewählt, um auch dem Transport des Radons im Boden Rechnung zu tragen, der mit der Permeabilität quantifiziert werden kann. Mit der Einführung des geogenen Radonpotentials wurden die Korrelationen zwischen den bei Radon-Bodengasmessungen verfügbaren Messgrößen und den Innenraumkonzentrationen verbessert [3].

Einteilung der Radonvorsorgegebiete (BfS-SW-24/18, 2018)

Klasse 1:	RP unter 20	Referenzwert in nicht beträchtlicher Anzahl überschritten
Klasse 2:	RP zwischen 20 und 44	Bewertung noch unsicher
Klasse 3:	RP über 44	Referenzwert in beträchtlicher Anzahl überschritten

Die Klassifizierungen beschreiben statistische Wahrscheinlichkeiten, den aktuellen Referenzwert (derzeit 300 Bq/m³ im Jahresmittel) in Gebäuden überschritten.

So wird für ein Radonpotentialwert von unter 20 nicht von einer Überschreitung von 300 Bg/m³ in einer beträchtlichen Anzahl von Gebäuden ausgegangen.

Bei Radonpotentialwerten zwischen 20 und 44 bestehen Unsicherheiten. Hier können nach dem derzeitigen Kenntnisund Datenstand keine eindeutigen Zuordnungen abgeleitet werden. In diesen Regionen sind weitergehende Untersuchungen (Radonpotential/Innenraumkonzentrationen) notwendig.

Bei einem Radonpotentialwert von über 44 wird mit einer Überschreitung von 300 Bq/m³ in einer beträchtlichen Anzahl von Gebäuden gerechnet, welcher definitionsgemäß laut Strahlenschutzgesetzt als Kriterium für die Ausweisung von Radonvorsorgegebieten gem. § 121 Absatz 1 StrlSchG gilt, sofern sich diese Beurteilung auf über 75% der zu betrachtende Gebietsfläche erstreckt.

Hinweis: Diese Betrachtungen gelten für den derzeitig noch gültigen Referenzwert von 300 Bq/m³ Radon-Aktivitätskonzentration in der Innenraumluft im Jahresmittel und muss für die zukünftig zu erwartenden gesetzlichen Änderungen angepasst werden.

Literatur

- Berufsverband Deutscher Baubiologen VDB e.V.: VDB-Richtlinien Band 2, 2018 (www.baubiologie.net)
- Bundesamt für Strahlenschutz: Radon-Handbuch Deutschland, 2019 (www.bfs.de)
- Bundesamt für Strahlenschutz, Bossew und Hoffmann, "Die Prognose des geogenen Radonpotentials in Deutschland und die Ableitung eines Schwellenwertes zur Ausweisung von Radonvorsorgegebieten" BfS-SW-24/18 urn:nbn:de:0221-2017122814454 (2018)
- 4. BVS-Standpunkt 02-2017 "Radon in Gebäuden", BVS e.V. 2017 (www.bvs-ev.de)
- 5. DIN EN ISO 11665-11:2020: "Ermittlung der Radioaktivität in der Umwelt Teil 11: Verfahren zur Probennahme und Prüfung von Bodenluft" Beuth-Verlag 2020
- 6. Haumann Th.; "Radon ein signifikantes Lungenkrebsrisiko im Innenraum", Gefahrstoffe Reinhaltung der Luft 79 (2019) Nr. 3 - März, VDI-Fachmedien
- Kemski & Partner, "Erarbeitung fachlicher Grundlagen zum Beurteilung der Vergleichbarkeit unterschiedlicher Messmethoden zur Bestimmung der Radonbodenluftkonzentration" - Vorhaben 3609S10003, BfS-RESFOR-63/12-Bd.1 urn:nbn:de:0221-201203237824 (2012)
- Umweltbundesamt/Ausschuss für Innenraumrichtwerte AIR, "Gesundheitliche Bewertung von Radon in der Innenraumluft" Ergebnisprotokoll der 50. Sitzung der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der IRK und der AOLG (2014)
- 9. Weltgesundheitsorganisation WHO, WHO Air Quality Guidelines 2nd edition, Chapter 8.3 Radon (WHO 2000)

